Extra Questions for Bonus Math 342

DR.JEHAN ALAWI AL-BAR

- 1. Prove Theorem 3.6: For each a in a group G, the centralizer of a is a subgroup of G, i.e $C(a) = \{g \in G | ga = ag\}$ is a subgroup of G.
- 2. In a group G every element has an inverse implies that the equations gx = h and xg = h are always solvable for x in G. Moreover, for $g, h \in G$ the equation gx = h has a unique solution $x = g^{-1}h$ and the equation xg = h has a unique solution $x = hg^{-1}$ in G. Using this fact, prove that every row and column of the cayley table of a group G contains every element of G exactly once.
- 3. If ϕ is an isomorphism from a group G to a group \overline{G} , prove that
 - (a) $\phi^{-1}: \overline{G} \to G$ is an isomorphism.
 - (b) If K is a subgroup of G, then $\phi K = \{\phi k | k \in K\}$ is a subgroup of \overline{G} .
- 4. Prove that $\phi_a(x) = axa^{-1}$ for all $x \in G$ is an automorphism of G, the Inner Automorphism induced by a.
- 5. prove that for a group G, $(Aut(G), \circ)$ is a group, where $Aut(G) = \{\phi | \phi : G \to G \text{ is an isomorphism}\}$ and \circ is the functions composition.
- 6. prove that for a group G, $(Inn(G), \circ)$ is a group, where $Inn(G) = \{\phi_a | a \in G\}$, the set of Inner automorphisms induces by elements of G.