Extra Questions for Bonus
 Math 342

by
Dr.Jehan Alawi Al-bar

1. Prove Theorem 3.6: For each a in a group G, the centralizer of a is a subgroup of G, i.e $C(a)=\{g \in G \mid g a=a g\}$ is a subgroup of G.
2. In a group G every element has an inverse implies that the equations $g x=h$ and $x g=h$ are always solvable for x in G. Moreover, for $g, h \in G$ the equation $g x=h$ has a unique solution $x=g^{-1} h$ and the equation $x g=h$ has a unique solution $x=h g^{-1}$ in G. Using this fact, prove that every row and column of the cayley table of a group G contains every element of G exactly once.
3. If ϕ is an isomorphism from a group G to a group \bar{G}, prove that
(a) $\phi^{-1}: \bar{G} \rightarrow G$ is an isomorphism.
(b) If K is a subgroup of G, then $\phi K=\{\phi k \mid k \in K\}$ is a subgroup of \bar{G}.
4. Prove that $\phi_{a}(x)=a x a^{-1}$ for all $x \in G$ is an automorphism of G, the Inner Automorphism induced by a.
5. prove that for a group $G,(\operatorname{Aut}(G), \circ)$ is a group, where $\operatorname{Aut}(G)=\{\phi \mid \phi: G \rightarrow G$ is an isomorphism $\}$ and \circ is the functions composition.
6. prove that for a group $G,(\operatorname{Inn}(G), \circ)$ is a group, where
$\operatorname{Inn}(G)=\left\{\phi_{a} \mid a \in G\right\}$, the set of Inner automorphisms induces by elements of G.
