A short Note Disscusing The Set \mathbb{Z}_{n} under ADDITION AND MULTIPLICATION $\bmod n$

by Dr.Jehan Alawi Al-bar

1. We prove here that $\left(\mathbb{Z}_{n}, \oplus\right)$ is an abelian(a commutative) group.
2. When considering the multiplication $\bmod n$, the elements in Z_{n} fail to have inverses. We study \mathbb{Z}_{4} as an example. However, we still have $\left(\mathbb{Z}_{n}, \otimes\right)$ is an abelian semigroup with identity as we will prove later.
3. We know that an integer a has a multiplicative inverse $\bmod n$ if and only if a and n are relatively prim $(\operatorname{gcd}(a, n)=1)$. So for each $n>1$, we define $U(n)$ to be the set of all positive integers less than n and relatively prim to n. Then $(U(n), \otimes)$ is an abelian group where the multiplication is taken mod n.

Let $\mathbb{Z}_{n}=\{0,1,2,3, \ldots n-1\}$, we show that $\left(\mathbb{Z}_{n}, \oplus\right)$ is an abelian group where \oplus is the addition $\bmod n$. Typical element in \mathbb{Z}_{n} is denoted by \bar{x} and $\bar{x} \oplus \bar{y}=\overline{x+y}$.

- First we show that \oplus is well defined on \mathbb{Z}_{n}. Let $\bar{x}_{1}=\bar{x}_{2}$ and $\bar{y}_{1}=\bar{y}_{2}$, then $x_{1}-x_{2}=q_{1} n$ and $y_{1}-y_{2}=q_{2} n$. Therefor $x_{1}-x_{2}+y_{1}-y_{2}=$ $q_{1} n+q_{2} n=\left(q_{1}+q_{2}\right) n$. and $\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)=q n$, so $x_{1}+y_{1} \equiv x_{2}+y_{2}$ $\bmod n$. Therefor $\overline{x_{1}+y_{1}}=\overline{x_{2}+y_{2}} \Leftrightarrow \bar{x}_{1} \oplus \bar{y}_{1}=\bar{x}_{1} \oplus \bar{y}_{2}$.
- We know that Z is closed under ordinary addition. For integers x, y we have $x+y \in \bar{R}$ for some equivalence class \bar{R} in \mathbb{Z}_{n} for some n. So $\bar{x} \oplus \bar{y}=\overline{x+y}=\bar{R}$ and so \mathbb{Z}_{n} is closed under \oplus.
- Let \bar{x}, \bar{y}, and $\bar{z} \in \mathbb{Z}_{n}$. Then
$(\bar{x} \oplus \bar{y}) \oplus \bar{z}=\overline{x+y} \oplus \bar{z}=\overline{(x+y)+z}=\overline{x+(y+z)}=\bar{x} \oplus \overline{y+z}=\bar{x} \oplus(\bar{y} \oplus \bar{z})$.
Therefor \oplus is an associative operation on \mathbb{Z}_{n}.
- The class $\overline{0}$ is the identity in \mathbb{Z}_{n} because

$$
\bar{x} \oplus \overline{0}=\overline{x+0}=\bar{x} .
$$

In a similar way we can show that $\overline{0} \oplus \bar{x}=\overline{0}$.

- We see that $-\bar{x}=\overline{-x}$ because

$$
\bar{x} \oplus \overline{-x}=\overline{x+(-x)}=\overline{x-x}=\overline{0} .
$$

Similarly we can show that $\overline{-x} \oplus \bar{x}=\overline{0}$. Notice that $\overline{-x}=\overline{n-x}$.

- For \bar{x} and $\bar{y} \in \mathbb{Z}_{n}$, we see that

$$
\bar{x} \oplus \bar{y}=\overline{x+y}=\overline{y+x}=\bar{y} \oplus \bar{x} .
$$

Therefor $\left(\mathbb{Z}_{\mathbf{n}}, \oplus\right)$ is a commutative group.

We now study the multiplication $\bmod n$ on the set \mathbb{Z}_{n}. Let $\bar{x} \otimes \bar{y}=\overline{x y}$

- we show that \otimes is well defined. Let $\overline{x_{1} y_{1}}=\overline{x_{2} y_{2}}$ therefor $x_{1} y_{1}-x_{2} y_{2}=$ q_{n}. If $\overline{x_{1}}=\overline{x_{2}}$ and $\overline{y_{1}}=\overline{y_{2}}$ then $x_{1}-x_{2}=q_{1} n$ and $y_{1}-y_{2}=q_{2} n$, therefor $\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)=q_{1} q_{2} n^{2}$ implies that $x_{1} y_{1}+x_{2} y_{2}-x_{2} y_{1}-x_{1} y_{2}=q_{1} q_{2} n^{2}$ so $x_{1} y_{1}+x_{2} y_{2}=x_{2} y_{1}+x_{1} y_{2}+q_{1} q_{2} n^{2}$ implies that $x_{1} y_{1}+x_{2} y_{2}-2 x_{2} y_{2}=$ $x_{2} y_{1}-x_{2} y_{2}+x_{1} y_{2}-x_{2} y_{2}+q_{1} q_{2} n^{2}$ implies that $x_{1} y_{1}-x_{2} y_{2}=x_{2}\left(y_{1}-y_{2}\right)+$ $y_{2}\left(x_{1}-x_{2}\right)+q_{1} q_{2} n^{2}=q_{2} x_{2} n+q_{1} y_{2} n+q_{1} q_{2} n^{2}=\left(q_{2} x_{2}+q_{1} y_{2}+q_{1} q_{2} n\right) n$ is some multiple of n. Therefor $\overline{x_{1} y_{1}}=\overline{x_{2} y_{2}}$ and the multiplication is well defined.
- The set of integers Z is closed under the ordinary multiplication, so for integers x and y we have that $x y \in \bar{R}$ for some class $\bar{R} \in \mathbb{Z}_{n}$. Therefor $\overline{x y}=\bar{R}$ and so $\overline{x y} \in \mathbb{Z}_{n}$. Therefor \mathbb{Z}_{n} is closed under multiplication $\bmod n$.
- Let \bar{x}, \bar{y} and $\bar{z} \in \mathbb{Z}_{n}$. Then $(\bar{x} \otimes \bar{y}) \otimes \bar{z}=\overline{x y} \otimes \bar{z}=\overline{(x y) z}=\overline{x(y z)}=$ $\bar{x} \otimes \overline{y z}=\bar{x}(\bar{y} \otimes \bar{z})$ and so the multiplication is associative.
- Denote the identity in \mathbb{Z}_{n} be \bar{e}. Then $\overline{x e}=\bar{x}$ implies that $\overline{x e}=\bar{x}$ therefor $x e-x=q n$ for $q \in Z$. And $x(e-1)=q n$. For $q=0$, then $x(e-1)=0$ therefor either $x=0$ or $e-1=0$ so $e=1$ and $\bar{e}=\overline{1}$ for all $x \neq 0$. If $\bar{e}=\overline{1}$ and $\bar{x}=\overline{0}$ then $\overline{01}=\overline{01}=\overline{0}$ and $\overline{10}=\overline{10}=\overline{0}$. Hence $\bar{e}=\overline{1}$ for all x.
- $\overline{x y}=\overline{x y}=\overline{y x}=\overline{y x}$ and so the multiplication is commutative.

Hence we have shown that $\left(\mathbb{Z}_{\mathbf{n}}, \otimes\right)$ is a commutative semigroup with identity.

This semigroup fails to be a group since the inverse of the elements does not always exist as we see in the following example.
Consider $\mathbb{Z}_{4}=\{0,1,2,3\}$ with the multiplication table

$* \bmod n$	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

From this table we see that $3^{-1}=3,1^{-1}=1$, but 0^{-1} and 2^{-1} are not exist.

An integer x has a multiplicative inverse $\bmod n$ if and only if x and n are relatively prime. So define for all $n>1$ the set $U(n)$ to be the set of all positive integers less than n and relatively prime to n. Then $(\mathbf{U}(\mathbf{n}), \otimes)$ is a group.

Note that If n is a prime integer then $U(n)=\{1,2,3, \ldots n-1\}=\mathbb{Z}_{n}{ }^{*}$ or we write $U(p)=\mathbb{Z}_{p}^{*}$.

