## A SHORT NOTE DISSCUSING THE SET $\mathbb{Z}_n$ UNDER ADDITION AND MULTIPLICATION mod n

by Dr.Jehan Alawi Al-bar

- 1. We prove here that  $(\mathbb{Z}_n, \oplus)$  is an abelian(a commutative) group.
- 2. When considering the multiplication  $mod\ n$ , the elements in  $\mathbb{Z}_n$  fail to have inverses. We study  $\mathbb{Z}_4$  as an example. However, we still have  $(\mathbb{Z}_n, \otimes)$  is an abelian semigroup with identity as we will prove later.
- 3. We know that an integer a has a multiplicative inverse mod n if and only if a and n are relatively prim (gcd(a,n)=1). So for each n>1, we define U(n) to be the set of all positive integers less than n and relatively prim to n. Then  $(U(n), \otimes)$  is an abelian group where the multiplication is taken mod n.

Let  $\mathbb{Z}_n = \{0, 1, 2, 3, ...n - 1\}$ , we show that  $(\mathbb{Z}_n, \oplus)$  is an abelian group where  $\oplus$  is the addition  $mod\ n$ . Typical element in  $\mathbb{Z}_n$  is denoted by  $\overline{x}$  and  $\overline{x} \oplus \overline{y} = \overline{x+y}$ .

- First we show that  $\oplus$  is well defined on  $\mathbb{Z}_n$ . Let  $\overline{x}_1 = \overline{x}_2$  and  $\overline{y}_1 = \overline{y}_2$ , then  $x_1 x_2 = q_1 n$  and  $y_1 y_2 = q_2 n$ . Therefor  $x_1 x_2 + y_1 y_2 = q_1 n + q_2 n = (q_1 + q_2) n$ . and  $(x_1 + y_1) (x_2 + y_2) = q n$ , so  $x_1 + y_1 \equiv x_2 + y_2 \mod n$ . Therefor  $\overline{x}_1 + \overline{y}_1 = \overline{x}_2 + y_2 \iff \overline{x}_1 \oplus \overline{y}_1 = \overline{x}_1 \oplus \overline{y}_2$ .
- We know that Z is closed under ordinary addition. For integers x, y we have  $x + y \in \overline{R}$  for some equivalence class  $\overline{R}$  in  $\mathbb{Z}_n$  for some n. So  $\overline{x} \oplus \overline{y} = \overline{x + y} = \overline{R}$  and so  $\mathbb{Z}_n$  is closed under  $\oplus$ .
- Let  $\overline{x}, \overline{y}$ , and  $\overline{z} \in \mathbb{Z}_n$ . Then

$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x + y} \oplus \overline{z} = \overline{(x + y) + z} = \overline{x + (y + z)} = \overline{x} \oplus \overline{y + z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

Therefor  $\oplus$  is an associative operation on  $\mathbb{Z}_n$ .

• The class  $\overline{0}$  is the identity in  $\mathbb{Z}_n$  because

$$\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}.$$

In a similar way we can show that  $\overline{0} \oplus \overline{x} = \overline{0}$ .

• We see that  $-\overline{x} = \overline{-x}$  because

$$\overline{x} \oplus \overline{-x} = \overline{x + (-x)} = \overline{x - x} = \overline{0}.$$

Similarly we can show that  $\overline{-x} \oplus \overline{x} = \overline{0}$ . Notice that  $\overline{-x} = \overline{n-x}$ .

• For  $\overline{x}$  and  $\overline{y} \in \mathbb{Z}_n$ , we see that

$$\overline{x} \oplus \overline{y} = \overline{x+y} = \overline{y+x} = \overline{y} \oplus \overline{x}.$$

Therefor  $(\mathbb{Z}_n, \oplus)$  is a commutative group.

We now study the multiplication mod n on the set  $\mathbb{Z}_n$ . Let  $\overline{x} \otimes \overline{y} = \overline{xy}$ 

- we show that  $\otimes$  is well defined. Let  $\overline{x_1y_1} = \overline{x_2y_2}$  therefor  $x_1y_1 x_2y_2 = q_n$ . If  $\overline{x_1} = \overline{x_2}$  and  $\overline{y_1} = \overline{y_2}$  then  $x_1 x_2 = q_1n$  and  $y_1 y_2 = q_2n$ , therefor  $(x_1 x_2)(y_1 y_2) = q_1q_2n^2$  implies that  $x_1y_1 + x_2y_2 x_2y_1 x_1y_2 = q_1q_2n^2$  so  $x_1y_1 + x_2y_2 = x_2y_1 + x_1y_2 + q_1q_2n^2$  implies that  $x_1y_1 + x_2y_2 2x_2y_2 = x_2y_1 x_2y_2 + x_1y_2 x_2y_2 + q_1q_2n^2$  implies that  $x_1y_1 x_2y_2 = x_2(y_1 y_2) + y_2(x_1 x_2) + q_1q_2n^2 = q_2x_2n + q_1y_2n + q_1q_2n^2 = (q_2x_2 + q_1y_2 + q_1q_2n)n$  is some multiple of n. Therefor  $\overline{x_1y_1} = \overline{x_2y_2}$  and the multiplication is well defined.
- The set of integers Z is closed under the ordinary multiplication, so for integers x and y we have that  $xy \in \overline{R}$  for some class  $\overline{R} \in \mathbb{Z}_n$ . Therefor  $\overline{xy} = \overline{R}$  and so  $\overline{xy} \in \mathbb{Z}_n$ . Therefor  $\mathbb{Z}_n$  is closed under multiplication  $mod\ n$ .
- Let  $\overline{x}, \overline{y}$  and  $\overline{z} \in \mathbb{Z}_n$ . Then  $(\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{xy} \otimes \overline{z} = \overline{(xy)z} = \overline{x(yz)} = \overline{x} \otimes \overline{yz} = \overline{x}(\overline{y} \otimes \overline{z})$  and so the multiplication is associative.
- Denote the identity in  $\mathbb{Z}_n$  be  $\overline{e}$ . Then  $\overline{xe} = \overline{x}$  implies that  $\overline{xe} = \overline{x}$  therefor xe x = qn for  $q \in Z$ . And x(e-1) = qn. For q = 0, then x(e-1) = 0 therefor either x = 0 or e-1 = 0 so e = 1 and  $\overline{e} = \overline{1}$  for all  $x \neq 0$ . If  $\overline{e} = \overline{1}$  and  $\overline{x} = \overline{0}$  then  $\overline{01} = \overline{01} = \overline{0}$  and  $\overline{10} = \overline{10} = \overline{0}$ . Hence  $\overline{e} = \overline{1}$  for all x.
- $\overline{xy} = \overline{xy} = \overline{yx} = \overline{yx}$  and so the multiplication is commutative.

## Hence we have shown that $(\mathbb{Z}_n, \otimes)$ is a commutative semigroup with identity.

This semigroup fails to be a group since the inverse of the elements does not always exist as we see in the following example.

Consider  $\mathbb{Z}_4 = \{0, 1, 2, 3\}$  with the multiplication table

| * mod n | 0 | 1 | 2 | 3 |
|---------|---|---|---|---|
| 0       | 0 | 0 | 0 | 0 |
| 1       | 0 | 1 | 2 | 3 |
| 2       | 0 | 2 | 0 | 2 |
| 3       | 0 | 3 | 2 | 1 |

From this table we see that  $3^{-1} = 3$ ,  $1^{-1} = 1$ , but  $0^{-1}$  and  $2^{-1}$  are not exist.

An integer x has a multiplicative inverse  $mod\ n$  if and only if x and n are relatively prime. So define for all n>1 the set U(n) to be the set of all positive integers less than n and relatively prime to n. Then  $(\mathbf{U}(\mathbf{n}),\otimes)$  is a group.

Note that If n is a prime integer then  $U(n)=\{1,2,3,...n-1\}=\mathbb{Z}_n^*$  or we write  $U(p)=\mathbb{Z}_p^*$ .